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Deep neural network

Deep Neural Network (DNN): The most widely used machine learning
models today. Have shown excellent performance in various fields such as
computer vision, natural language processing, speech recognition and
synthesis, recommendation systems, finance, bioinformatics, etc.

Characteristic: Strong feature extraction capabilities on large-scale
datasets.
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Deep neural network

Fully connected neural network: Every two neurons are connected
between two adjacent layers.

Figure: Structure of the fully connected neural network
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Training process

Loss function: F denotes neural network,

L(W) =
1
2 ||F(W)− F(W∗)||22 + λ||W − W∗||22.

W∗: the unique optimal point of parameters, L(W∗) = 0.
Back propagation: find the derivative of the loss function with respect to
the network parameters.
Stochastic optimization algorithm :Simulated annealing, Stochastic
gradient descent (SGD) and its variants.
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Simulated annealing

Continuation of simulated annealing (Stephan, Hoffman, Blei, 2017):

dW(t) = −∇L(W(t))dt +√
ηtdB(t), t≥0.

W(0)∼P0(W(0)).

Mainly according to (Holley, Kusuoka, Stroock, 1989), we have:

Lemma 1
Assume that loss function L(W)≥0, W(t), t∈[0,+∞) satisfy the equation
above, L(W) has unique global minimum point W = W∗ and L(W∗) = 0.
Then there exists function ηt of t, s.t. for δ > 0:

P(L(W(t))≥δ)≤ϵ(δ, t).

Where ϵ(δ, t)→0 when t→∞.
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Interpretability

Definition: The capability of providing explanations for the model’s
decision outcomes and the internal mechanisms that lead to those
decisions, aligning with human reasoning processes.
Significance�

(1) Safety
(2) Human trust in the model

�
Limitations of current research: Mainly targeting a specific application
problem or model structure.

Zigeng Xia (Peking University) The Interpretability of DNNs Based on RG



Backgrounds
Main results

Conclusion and future work

Renormalization group method (RG)

First proposed by Kadanoff in 1966, and then developed by Wilson.
Phase transitions and critical phenomena
Idea of RG�

Microscopic variables ⇒ macroscopic properties
Ising model: coarse graining procedure
continuous models: scaling transformation

Condition: The state function and its functional form with respect to
characteristic parameters must remain unchanged: same physical system.
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RG of one dimensional Ising model

Hamiltonian

H = −J
N∑

i=1
xixi+1 − h

N∑
i=1

xi.

J > 0: coupling constant, periodic boundary condition:

xN+1≜x1.

The probability distribution and the partition function:

P(x1, x2, · · ·, xN) =
1
Z

e−
1

kBTH
=

1
Z

e
J

kBT
∑N

i=1 xixi+1+
h

kBT
∑N

i=1 xi .

Z =
∑

{xi}=±1

e
J

kBT
∑N

i=1 xixi+1+
h

kBT
∑N

i=1 xi .
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RG of one dimensional Ising model

Renormalization transformation: coarse graining procedure

Figure: Coarse graining of Ising model
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RG of one dimensional Ising model

For convenience, we consider kBT = 1 and h = 0:

P(x1, x2, · · ·, xN) =
1

Z(J)eJ
∑N

i=1 xixi+1 , xi∈{±1}, i = 1, 2, · · ·,N, xN+1≜x1,

Z(J) =
∑

{xi}=±1

eJ
∑N

i=1 xixi+1 .
(1)

The renormalization transformation is (assume N = 2n):

x̃i = x2i, i = 1, 2, · · ·, N
2 ,
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RG of one dimensional Ising model: canonical results

Z(J) =
∑

{xi}=±1

eJ
∑N

i=1 xixi+1 =
∑

{x̃j}=±1

eJ0+J̃
∑ N

2
j=1 x̃i x̃i+1 .

Where J0 is a nonzero constant must be introduced, represents the non
singular part of the Hamiltonian. Then

J0 =
N
2 (log(4 cosh(2J)), J̃ =

1
2 log(cosh(2J))

J∗ =
1
2 log(cosh(2J∗)). (2)

From above equation J has two fixed point J∗ = 0 and J∗ = ∞, where J∗ = 0
is the stable fixed point.
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Research status

The first notable work is that in (Mehta, Schwab, 2014) they constructs
a mapping between the variational renormalization group and restricted
Boltzmann machines (RBM).

Variational renormalization group: a method to calculate
specifically the approximate RG transform according to the
restrictions of the free energy.
RBM model:

Figure: Restricted Boltzmann machine
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Research status
Some other works based on (Mehta, Schwab, 2014):

(Iso, Shiba, Yokoo, 2018) Trained an RBM model on Ising model and
observed the temperature parameter of model converging toward a
critical point, demonstrating self-similarity akin to RG method at the
critical point.
(Caticha, 2019) Considered the infinite-depth limit, approximately
aligning neural networks with RG under continuous depth.
(Koch, Koch, Cheng, 2020) Compared the similarity between a layer of
RBM and a step of coarse graining in RG by computing the correlation
function< vihj >between the visible and hidden layers.
(Erdmenger, Grosvenor, Jefferson, 2022) Compared the relative entropy
in real space RG coarse graining and neural network forward propagation
on Ising model.
(Shukla, Thakur, 2022) (Lahoche, Samary, Tamaazousti, 2022) Compared
RG with autoencoders, and principal component analysis (PCA).
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Our main improvements

(1): Conceptual illustration ⇒ Theoretically rigorous mapping

(2): The experimental analysis based on visual observation ⇒ A
theoretical proof of equivalence

(3): RBM models ⇒ general DNNs
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Problem

(1): How to construct the corresponding framework of DNN and RG.
Input data and output ⇒ physical systems

(2): With the above corresponding relationship, how to prove the
equivalence of DNN and RG on concrete data.

We discuss one dimensional Ising model on finite lattice and a class of models
obey the exponential family distribution.
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Fully connected neural network without hidden layers

Figure: Fully connected neural network without hidden layers
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Data and training algorithm
Input data: One dimensional Ising model on finite lattice:

P(x1, x2, · · ·, xN) =
1

Z(J)eJ
∑N

i=1 xixi+1 , xi∈{±1}, i = 1, 2, · · ·,N, xN+1≜x1,

Z(J) =
∑

{xi}=±1

eJ
∑N

i=1 xixi+1 .

Loss function:

L(W(t)) =
1
2

∑
{xi}=±1

[
M∑

j=1
(f(x1w(t)

1j + x2w(t)
2j + · · ·+ xNw(t)

Nj + b(t)
j )

− f(x1w∗
1j + x2w∗

2j + · · ·+ xNw∗
Nj + b∗j ))2]

+ λ

N∑
i=1

M∑
j=1

(w(t)
ij − w∗

ij)
2 + λ

M∑
j=1

(b(t)
j − b∗j )2.

Training algorithm: Simulated annealing.
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Method to construct the correspondence relation

Criteria:
(1) State function: partition function, value remains unchanged.
(2) Functional form of Hamiltonian with respect to the fundational part
of the system and the coupling constant remains unchanged.

Equation: Let yj = f(x1w(t)
1j + x2w(t)

2j + · · ·+ xNw(t)
Nj + b(t)

j ), j = 1, · · ·,M,

Z(J)≡eNg(t)E[
∑

{xi}=±1

eJt
∑M

j=1 yjyj+1 ], (3)

Z(J) =
∑

{xi}=±1

eJ
∑N

i=1 xixi+1 .

g(t) is a non-singular and non-stochastic function of time t with g(0) = 0.
Correspondence relation: {xi}⇔{yj}, J⇔Jt, g(t)⇔J0.
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Results

Z(J)≡eNg(t)E[
∑

{xi}=±1

eJt
∑M

j=1 yjyj+1 ], (3)

Theorem 2 (Gong, X., 2024+; arXiv:2212.00005)
With respect to above network structure and training algorithm, ηt is chosen
according to Lemma 1, then ∃g(t)∈C∞, s.t. when equation (3) holds for
t∈[0,∞), we have limt→∞ Jt = J∗ = 0. J∗ denotes the stable fixed point of J
in real space renormalization group of one-dimensional Ising model on finite
lattice.
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Conclusion

limt→∞ Jt: macroscopic property of the output system in neural network

J∗: macroscopic property of one dimensional Ising model on finite lattice,
calculated by real space RG

limt→∞ Jt = J∗: two methods extract same macroscopic property
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Remarks

Generalize: stochastic gradient descent (SGD) algorithm

Stable fixed point: finite system, no phase transition
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Fully connected deep neural network

Network structure: Multiple hidden layers.
Loss function:

L(W,B) =
∑

{xi}=±1

[
M∑

j=1
(f(u(L)

1 w(L+1)
1j + u(L)

2 w(L+1)
2j + · · ·+ u(L)

HL
w(L+1)

HLj + b(L+1)
j )

− f(u∗(L)
1 w∗(L+1)

1j + u∗(L)
2 w∗(L+1)

2j + · · ·+ u∗(L)
HL

w∗(L+1)
HLj + b∗(L+1)

j ))2]

+ λ(

L+1∑
l=1

Hl−1∑
i=1

Hl∑
j=1

(w(l)
ij − w∗(l)

ij )2 +

L+1∑
l=1

Hl∑
i=1

(b(l)
i − b∗(l)

i )2).

Training algorithm: Simulated annealing (Θ(t)≜(W(t),B(t))),

dΘ(t) = −∇L(Θ(t))dt +√
ηtdB(t).
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Method to construct the correspondence relation

Output of the network (value in the last layer):

yj = f(u(L)
1 w(L+1)

1j + u(L)
2 w(L+1)

2j + · · ·+ u(L)
HL

w(L+1)
HLj + b(L+1)

j ), j = 1, 2, · · · ,M.

Equation:

Z(J)≡eNg(t)E[
∑

{xi}=±1
eJt

∑M
j=1 yjyj+1 ]. (4)

Boundary condition:

f(u(L)
1 w(L+1)

1,M+1 + u(L)
2 w(L+1)

2,M+1 + · · ·+ u(L)
HL

w(L+1)
HL,M+1 + b(L+1)

M+1 )

=f(u(L)
1 w(L+1)

11 + u(L)
2 w(L+1)

21 + · · ·+ u(L)
HL

w(L+1)
HL1 + b(L+1)

1 ).
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Results

Z(J)≡eNg(t)E[
∑

{xi}=±1

eJt
∑M

j=1 yjyj+1 ]. (4)

Theorem 3 (Gong, X., 2024+; arXiv:2212.00005)
With respect to above network structure and training algorithm, ηt is chosen
according to Lemma 1, then ∃g(t)∈C∞, such that when equation (4) holds for
t∈[0,∞), we have limt→∞ Jt = J∗ = 0. J∗ denotes the fixed point of J in real
space renormalization group of one-dimensional Ising model on finite lattice.
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Continuous distribution: exponential family
Exponential family of distributions:

P(x; θ) = C(θ)e
∑R

r=1−θrTr(x)h(x), x = (x1, x2, · · ·, xN)∈RN

Here we choose:

Tr(x) = (
∑N

j,k=1
ajkxjxk +

∑N

j=1
bjxj)

r,

Where ajk∈R, j, k = 1, · · ·,N and bj, j = 1, · · ·,N are constants, s.t. matrix
A = (ajk) symmetric and non negative definite. h(x)≡1 and

C(θ) =
1

Z(θ)
,Z(θ) =

∫
e
∑R

r=1−θr(
∑N

j,k=1ajkxjxk+
∑N

j=1bjxj)
r
dx,

the distribution density of the data is:

P(x; θ) = 1
Z(θ)

e
∑R

r=1−θr(
∑N

j,k=1ajkxjxk+
∑N

j=1bjxj)
r
.
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Transformation of the data

Transform the distribution of data into a form of Landau-Ginzburg-Wilson
Hamiltonian (Zinn-Justin, 2007).

(1) First through the transformation x̃j = xj + fj, j = 1, · · ·,N, change the
Hamiltonian into a polynomial with only even terms using undetermined
coefficients. ∑R

r=1
θr(

∑N

j,k=1
ajkxjxk)

r.

(2) Transform the quadratic form into a diagonal form.∑N

j,k=1
ajkxjxk =

∑N

i=1
µiy2

i .

(3) Transform the Hamiltonian into translation-invariant form through
dilation:

H =
∑R

r=1
θr(

∑N

j,k=1
ajkxjxk)

r =
∑R

r=1
θr(

∑N

i=1
y2

i )
r.
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RG on continuous field

Continuous field σ(x) defined on RN, Hamiltonian of the system:

H(σ) = H(σ(x)), x∈RN.

The probability of a configuration σ satisfies

P(σ)∝e−H(σ).

The partition function of the system is:

Z(H) =

∫
e−H(σ)[dσ],

(where [dσ] is only a formal sign since the uniform measure does not exist on
the field space), the n−points correlation function is:

G
(n)(σ(x1), σ(x2), ···, σ(xN))≜

1
Z

∫
σ(x1)σ(x2)···σ(xN)e−H(σ)[dσ].
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RG on continuous field

RG transformation: dilation parameter λ, Hλ(σ) is the Hamiltonian under
transformation.

Hλ=1(σ) = H(σ).

Criterion: renormalization group equation (RGE) based on correlation function.

G
(n)
λ (σ(x1), σ(x2), ···, σ(xN))− Z− n

2 (λ)G(n)(σ(λx1), σ(λx2), ···, σ(λxN))

= R
(n)
λ (σ(x1), σ(x2), ···, σ(xN)).

Where

G
(n)
λ (σ(x1), σ(x2), ···, σ(xN))≜

1
Zλ

∫
σ(x1)σ(x2)···σ(xN)e−Hλ(σ)[dσ].

Z(λ): function of λ (choice of Z(λ) is a difficult point).
R

(n)
λ : Schwartz function of λ.
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RG on continuous field

The form of RG transformation:

Hλ(σ(x)) = Hλ=1(Z(λ)
1
2 σ(

x
λ
)).

When λ→∞, if Hλ(σ) has a limit H∗(σ): the fixed-point Hamiltonian, its
characteristic parameters : the fixed point of corresponding characteristic
parameters in the system.
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Compatibility with the real space RG

Proposition (Cui, Gong, 2022)
For the Ising model without external field, using coarse graining as the RG
transformation, then for one step, the dilation parameter λ = 2, the RGE with
respect to the 2-points correlation function is (here choose Z(λ) = 1):

G
(2)
λ (x1, x2)−G(λx1, λx2) = Rλ(x1, x2). (5)

when the renormalization process goes on, let λ = 2n, n→∞ then the
remainder Rλ(x1, x2) tends to 0 exponentially.
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RG of the input data

We define a general form of the Hamiltonian:

H̃ :Σ×RR×N→R

H̃(σ, θ,N) =

∫
RN

∑R

r=1
θr(

∑N

i=1
σi(x)2)rdx.

Where the space of field Σ is the subspace of functions RN→RN.

Input data:
P(x) = 1

Z(θ)
e−

∑R
r=1θr(

∑N
i=1x2

i )
r
.

Corresponding field:

σ :RN→RN

σi(x) = xi, i = 1, 2, · · ·,N.
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RG of the input data

RG transformation:
xi 7→Z

1
2 (λ)·xi

λ
, i = 1, 2, · · ·,N. (6)

Transformation of characteristic parameters θr are:

θr 7→θr·Z(λ)r· 1
λ2r ≜θλr , r = 1, 2, · · · ,R

When λ→∞, the limit of the characteristic parameters are the fixed points:

θ∗r ≜θr·limλ→∞Z(λ)r· 1
λ2r

Zigeng Xia (Peking University) The Interpretability of DNNs Based on RG
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RG of the input data

RGE:
1
Zλ

∫
(x(1))κ⃗1(x(2))κ⃗2 ···(x(n))κ⃗n e−

∑R
r=1θr(Z(λ) 1

λ2 )r(
∑N

i=1x2
i )

r
dx1dx2···dxN

− Z− n
2 (λ)

1
Z

∫
λ
∑n

l=1|κ⃗l|·(x(1))κ⃗1(x(2))κ⃗2 ···(x(n))κ⃗n e−
∑R

r=1θr(
∑N

i=1x2
i )

r
dx1dx2···dxN

= R
(n)
λ (x(1), x(2), ···, x(n)).

λ→∞, condition: Zλ = Z,∫
(x(1))κ⃗1 (x(2))κ⃗2 ···(x(n))κ⃗n e−

∑R
r=1θ

∗
r (

∑N
i=1x2

i )
r
dx1dx2···dxN

− limλ→∞(Z− n
2 (λ)λ

∑n
l=1|κ⃗l|)

∫
·(x(1))κ⃗1 (x(2))κ⃗2 ···(x(n))κ⃗n e−

∑R
r=1θr(

∑N
i=1x2

i )
r
dx1dx2···dxN

= 0.

Assume: non trivial parameter fixed points
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Forward propagation as a RG transformation
General form of the Hamiltonian:

H̃ :Σ×RR×N→R

H̃(σ, θ,N) =

∫
RN

∑R

r=1
θr(

∑N

i=1
σi(x)2)rdx.

For the out put of neural network,

ϕ :RN→RM

ϕj(x) = Fj(x;W), j = 1, 2, · · ·,M.

Where F(x;W) is the network. e.g. the neural network without hidden layers:

Fj(x;W) = f(x1w1j + x2w2j + · · ·+ xNwNj + bj), (7)

H̃(ϕ, θ,M) =

∫
RN

∑R

r=1
θ̃t

r(
∑M

j=1
Fj(x;Wt)2)rdx,

partition function:

Zt = EWt
[∫

eNg(t)−
∫
RN

∑R
r=1θ̃

t
r(
∑M

j=1Fj(x;Wt)2)rdx[dϕ]
]
.
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Forward propagation as a RG transformation

Rewrite:

Zt = EWt
[∫

Σ

eNg(t)−
∫∑R

r=2θ̃
t
r(
∑M

j=1ϕj(x,Wt)2)rdxdN(0, 1
θ̃t

1
)
]
.

Non-canonical RG transformation:

θ̃t
r = θr· ˜Z(t)

r
· 1
t2r .

RGE of n-points correlation function:

EWt
[∫

ϕ(x(1)
, Wt

)
κ⃗1ϕ(x(2)

, Wt
)
κ⃗2 ···ϕ(x(n)

, Wt
)
κ⃗n eNg(t)−

∫∑R
r=2θ̃t

r(
∑M

j=1ϕj(x,Wt)2)rdxdN(0,
1
θ̃t

1
)
]

−
∫

ϕ(x(1)
, W1

)
κ⃗1ϕ(x(2)

, W1
)
κ⃗2 ···ϕ(x(n)

, W1
)
κ⃗n eNg(1)−

∫∑R
r=2θr(

∑M
j=1ϕj(x,W1)2)rdxdN(0,

1
θ1

)

= R
(n)
t (x(1)

, x(2)
, ···, x(n)

).
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Method to construct the correspondence relation and result

Theorem 4 (Gong, X., 2024+)
Assuming characteristic parameters θr > 0, r = 1, 2, ···,R have fixed points
θ∗r ≥0, r = 1, 2, ···,R under the RG method based on scaling transformation.
The structure of the neural network is the fully connected network, training
algorithm is simulated annealing and η(t) is chosen through Lemma 1. Then
∃g(t)∈C∞[1,+∞) s.t.

Zt = Z,

RGE for output holds true, and

θ̃∗r ≜limt→∞θ̃t
r = θ∗r .r = 1, 2, ···,R.
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Conclusion

As an exploration direction in the theoretical study of interpretability of deep
neural networks, constructing a corresponding relationship between them and
renormalization group theory: intuitive, theoretically valid.

One dimensional Ising model on finite lattice

A class of data in exponential family
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Future works

More general form of Hamiltonian:
Analysis of the stability of the fixed point:

H(x; θλ) = H(x; θ∗) + ∆θ·(H
′
θ (x; θ∗)) + O(∆θ2).

Guess the fixed point of H =
∑R

r=1θr(
∑N

i=1x2
i )

r: Gaussian
Functional renormalization group method
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Thanks!
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Remarks

Stochastic gradient descent (SGD) algorithm:

dW(t) = −∇L̂(W(t))dt +
√

ηt

S σ(W(t))dB(t), t≥0,

σ(W(t))σ(W(t))T = Σ(W(t))

=
1

2N

∑
{xi}=±1

[(∇l̂(W(t), {xi})−∇L̂(W(t)))(∇l̂(W(t), {xi})−∇L̂(W(t)))T],

l̂(W(t), {xi}) = [
M∑

j=1
(f(x1w(t)

1j +x2w(t)
2j +···+xNw(t)

Nj )−f(x1w∗
1j+x2w∗

2j+···+xNw∗
Nj))

2],W(0)∼P0(W(0)).
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